531 research outputs found

    Prevention of Alzheimer's disease in high risk groups: statin therapy in subjects with PSEN1 mutations or heterozygosity for apolipoprotein E epsilon 4

    Get PDF
    Because cerebrospinal fluid (CSF) abnormalities in presymptomatic subjects with PSEN1 (presenilin 1) mutations may be observed 4 to 12 years prior to the estimated age at onset, it is possible to test putative therapies on the CSF analytes that correlate with neurodegeneration during this presymptomatic window of clinical opportunity. It is also possible to test the same therapy on a comparison group with increased risk status conferred by both hyperlipidemia and heterozygosity for apolipoprotein Eε4. To our knowledge, the only putative therapy thus far tested in such a common design has been statin therapy. The results of these tests show increases in soluble amyloid precursor protein (sAPP)α correlating with statin-induced decreases in serum cholesterol levels in the non-PSEN1 subjects. This result could be one functional correlate for part of the substantial risk reduction for late onset Alzheimer\u27s disease recently reported in the Rotterdam study, a large, long-term prospective statin trial. Statin therapy significantly decreased both sAPPα and sAPPβ in presymptomatic PSEN1 subjects. Initially, elevated phospho-tau levels in PSEN1 subjects did not further increase during the 2 to 3 years of statin therapy, possibly indicative of a prophylactic effect. These results suggest that large and longer term trials of statin therapy correlating changes in CSF biomarker levels with clinical course may be warranted in both presymptomatic PSEN1 and non-PSEN1 subjects

    SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis

    Get PDF
    Objective: There is increasing evidence that common genetic risk factors underlie frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Recently, mutations in the sequestosome 1 (SQSTM1) gene, which encodes p62 protein, have been reported in patients with ALS. P62 is a multifunctional adapter protein mainly involved in selective autophagy, oxidative stress response, and cell signaling pathways. The purpose of our study was to evaluate the frequency of SQSTM1 mutations in a dataset of unrelated patients with FTLD or ALS, in comparison with healthy controls and patients with Paget disease of bone (PDB). Methods: Promoter region and all exons of SQSTM1 were sequenced in a large group of subjects, including patients with FTLD or ALS, healthy controls, and patients with PDB. The clinical characteristics of patients with FTLD or ALS with gene mutations were examined. Results: We identified 6 missense mutations in the coding region of SQSTM1 in patients with either FTLD or ALS, none of which were found in healthy controls or patients with PDB. In silico analysis suggested a pathogenetic role for these mutations. Furthermore, 7 novel noncoding SQSTM1 variants were found in patients with FTLD and patients with ALS, including 4 variations in the promoter region. Conclusions: SQSTM1 mutations are present in patients with FTLD and patients with ALS. Additional studies are warranted in order to better investigate the role of p62 in the pathogenesis of both FTLD and ALS

    TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 1

    Exclusion of PINK1 as candidate gene for the late-onset form of Parkinson's disease in two European populations

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recently, mutations in the PINK1 (PARK6) gene were shown to rarely cause autosomal-recessively transmitted, early-onset parkinsonism. In order to evaluate whether PINK1 contributes to the risk of common late-onset PD we analysed PINK1 sequence variations. A German (85 patients) and a Norwegian cohort (90 patients) suffering from late-onset PD were screened for mutations and single nucleotide polymorphisms (SNPs) in the PINK1 gene. Both cohorts consist of well-characterized patients presenting a positive family history of PD in ~17%. Investigations were performed by single strand conformation polymorphism (SSCP), denaturating high performance liquid chromatography (DHPLC) and sequencing analyses. SNP frequencies were compared by the χ(2 )test RESULTS: Several common SNPs were identified in our cohorts, including a recently identified coding variant (Q115L) in exon 1. Genotyping of the Q115L variation did not reveal significant frequency differences between patients and controls. Pathogenic mutations in the PINK1 gene were not identified, neither in the German nor in the Norwegian cohort. CONCLUSION: Sequence variation in the PINK1 gene appears to play a marginal quantitative role in the pathogenesis of the late-onset form of PD, in German and Norwegian cohorts, if at all

    Genome-wide association reveals genetic effects on human Aβ<sub>42 </sub>and τ protein levels in cerebrospinal fluids: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is common and highly heritable with many genes and gene variants associated with AD in one or more studies, including APOE ε2/ε3/ε4. However, the genetic backgrounds for normal cognition, mild cognitive impairment (MCI) and AD in terms of changes in cerebrospinal fluid (CSF) levels of Aβ<sub>1-42</sub>, T-tau, and P-tau<sub>181P</sub>, have not been clearly delineated. We carried out a genome-wide association study (GWAS) in order to better define the genetic backgrounds to these three states in relation to CSF levels.</p> <p>Methods</p> <p>Subjects were participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). The GWAS dataset consisted of 818 participants (mainly Caucasian) genotyped using the Illumina Human Genome 610 Quad BeadChips. This sample included 410 subjects (119 Normal, 115 MCI and 176 AD) with measurements of CSF Aβ<sub>1-42</sub>, T-tau, and P-tau<sub>181P </sub>Levels. We used PLINK to find genetic associations with the three CSF biomarker levels. Association of each of the 498,205 SNPs was tested using additive, dominant, and general association models while considering APOE genotype and age. Finally, an effort was made to better identify relevant biochemical pathways for associated genes using the ALIGATOR software.</p> <p>Results</p> <p>We found that there were some associations with APOE genotype although CSF levels were about the same for each subject group; CSF Aβ<sub>1-42 </sub>levels decreased with APOE gene dose for each subject group. T-tau levels tended to be higher among AD cases than among normal subjects. From adjusted result using APOE genotype and age as covariates, no SNP was associated with CSF levels among AD subjects. <it>CYP19A1 </it>'aromatase' (rs2899472), <it>NCAM2</it>, and multiple SNPs located on chromosome 10 near the <it>ARL5B </it>gene demonstrated the strongest associations with Aβ<sub>1-42 </sub>in normal subjects. Two genes found to be near the top SNPs, <it>CYP19A1 </it>(rs2899472, p = 1.90 × 10<sup>-7</sup>) and <it>NCAM2 </it>(rs1022442, p = 2.75 × 10<sup>-7</sup>) have been reported as genetic factors related to the progression of AD from previous studies. In AD subjects, APOE ε2/ε3 and ε2/ε4 genotypes were associated with elevated T-tau levels and ε4/ε4 genotype was associated with elevated T-tau and P-tau<sub>181P </sub>levels. Pathway analysis detected several biological pathways implicated in Normal with CSF β-amyloid peptide (Aβ<sub>1-42</sub>).</p> <p>Conclusions</p> <p>Our genome-wide association analysis identified several SNPs as important factors for CSF biomarker. We also provide new evidence for additional candidate genetic risk factors from pathway analysis that can be tested in further studies.</p

    Targeted copy number variant identification across the neurodegenerative disease spectrum

    Get PDF
    Background: Although genetic factors are known to contribute to neurodegenerative disease susceptibility, there remains a large amount of heritability unaccounted for across the diagnoses. Copy number variants (CNVs) contribute to these phenotypes, but their presence and influence on disease state remains relatively understudied. Methods: Here, we applied a depth of coverage approach to detect CNVs in 80 genes previously associated with neurodegenerative disease within participants of the Ontario Neurodegenerative Disease Research Initiative (n = 519). Results: In total, we identified and validated four CNVs in the cohort, including: (1) a heterozygous deletion of exon 5 in OPTN in an Alzheimer\u27s disease participant; (2) a duplication of exons 1–5 in PARK7 in an amyotrophic lateral sclerosis participant; (3) a duplication of \u3e3 Mb, which encompassed ABCC6, in a cerebrovascular disease (CVD) participant; and (4) a duplication of exons 7–11 in SAMHD1 in a mild cognitive impairment participant. We also identified 43 additional CNVs that may be candidates for future replication studies. Conclusion: The identification of the CNVs suggests a portion of the apparent missing heritability of the phenotypes may be due to these structural variants, and their assessment is imperative for a thorough understanding of the genetic spectrum of neurodegeneration

    APOE-ɛ4, white matter hyperintensities, and cognition in Alzheimer and Lewy body dementia

    Get PDF
    Objective To determine if APOE ε4 influences the association between white matter hyperintensities (WMH) and cognitive impairment in Alzheimer disease (AD) and dementia with Lewy bodies (DLB). Methods A total of 289 patients (AD = 239; DLB = 50) underwent volumetric MRI, neuropsychological testing, and APOE ε4 genotyping. Total WMH volumes were quantified. Neuropsychological test scores were included in a confirmatory factor analysis to identify cognitive domains encompassing attention/executive functions, learning/memory, and language, and factor scores for each domain were calculated per participant. After testing interactions between WMH and APOE ε4 in the full sample, we tested associations of WMH with factor scores using linear regression models in APOE ε4 carriers (n = 167) and noncarriers (n = 122). We hypothesized that greater WMH volume would relate to worse cognition more strongly in APOE ε4 carriers. Findings were replicated in 198 patients with AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI-I), and estimates from both samples were meta-analyzed. Results A significant interaction was observed between WMH and APOE ε4 for language, but not for memory or executive functions. Separate analyses in APOE ε4 carriers and noncarriers showed that greater WMH volume was associated with worse attention/executive functions, learning/memory, and language in APOE ε4 carriers only. In ADNI-I, greater WMH burden was associated with worse attention/executive functions and language in APOE ε4 carriers only. No significant associations were observed in noncarriers. Meta-analyses showed that greater WMH volume was associated with worse performance on all cognitive domains in APOE ε4 carriers only. Conclusion APOE ε4 may influence the association between WMH and cognitive performance in AD and DLB

    Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Open Access funded by Wellcome TrustThe similarities between dementia with Lewy bodies (DLB) and both Parkinson's disease (PD) and Alzheimer's disease (AD) are many and range from clinical presentation, to neuropathological characteristics, to more recently identified, genetic determinants of risk. Because of these overlapping features, diagnosing DLB is challenging and has clinical implications since some therapeutic agents that are applicable in other diseases have adverse effects in DLB. Having shown that DLB shares some genetic risk with PD and AD, we have now quantified the amount of sharing through the application of genetic correlation estimates, and show that, from a purely genetic perspective, and excluding the strong association at the APOE locus, DLB is equally correlated to AD and PD.Rita Guerreiro and Jose Bras are supported by Research Fellowships from the Alzheimer's Society. This work was supported in part by a Parkinson's UK Innovation Award (K-1204) in collaboration with the Lewy Body Society and by the Wellcome Trust/MRC Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson's Disease Consortium whose members are from the UCL Institute of Neurology, the University of Sheffield, and the MRC Protein Phosphorylation Unit at the University of Dundee and by an anonymous Foundation. The authors would like to acknowledge Elena Lorenzo for her technical assistance. This study was supported in part by grants from the Spanish Ministry of Science and InnovationSAF2006-10126 (2006–2009) and SAF2010-22329-C02-01 (2011–2013) and SAF2013-47939-R (2013–2015) to Pau Pastor and by the UTE project FIMA to Pau Pastor. They acknowledge the Oxford Brain Bank, supported by the Medical Research Council (MRC), Brains for Dementia Research (BDR) (Alzheimer Society and Alzheimer Research UK), Autistica UK, and the NIHR Oxford Biomedical Research Centre. The sample collection and database of the Amsterdam Dementia Cohort was funded by Stichting Dioraphte and Stichting VUMC fonds. Glenda M. Halliday is a Senior Principal Research Fellow of the National Health and Medical Research Council of Australia. For the neuropathologically confirmed samples from Australia, brain tissue was received from the Sydney Brain Bank, which is supported by Neuroscience Research Australia, the University of New South Wales, and the National Health and Medical Research Council of Australia. This study was also partially funded by the Wellcome Trust, Medical Research Council, Canadian Institutes of Health Research, Ontario Research Fund. The Nottingham Genetics Group is supported by ARUK and The Big Lottery Fund. The effort from Columbia University was supported by the Taub Institute, the Panasci Fund, the Parkinson's Disease Foundation, and NIH grants NS060113 (Lorraine Clark), P50AG008702 (P.I. Scott Small), P50NS038370 (P.I. R. Burke), and UL1TR000040 (P.I. H. Ginsberg). Owen A. Ross is supported by the Michael J. Fox Foundation, NINDS R01# NS078086. The Mayo Clinic Jacksonville is a Morris K. Udall Parkinson's Disease Research Center of Excellence (NINDS P50 #NS072187) and is supported by the Mangurian Foundation for Lewy body research. This work has received support from The Queen Square Brain Bank at the UCL Institute of Neurology. Some of the tissue samples studies were provided by the MRC London Neurodegenerative Diseases Brain Bank and the Brains for Dementia Research project (funded by Alzheimer's Society and ARUK). This research was supported in part by the NIHR UCLH Biomedical Research Centre, the Queen Square Dementia Biomedical Research Unit, the National Institute for Health Research (NIHR) Dementia Biomedical Research Unit and Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College Hospital, London. This work was supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health, Department of Health and Human Services; project AG000951-12. Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust and the Medical Research Council

    Receptor-Associated Protein (RAP) Plays a Central Role in Modulating Aβ Deposition in APP/PS1 Transgenic Mice

    Get PDF
    BACKGROUND: Receptor associated protein (RAP) functions in the endoplasmic reticulum (ER) to assist in the maturation of several membrane receptor proteins, including low density lipoprotein receptor-related protein (LRP) and lipoprotein receptor 11 (SorLA/LR11). Previous studies in cell and mouse model systems have demonstrated that these proteins play roles in the metabolism of the amyloid precursor protein (APP), including processes involved in the generation, catabolism and deposition of beta-amyloid (Abeta) peptides. METHODOLOGY/PRINCIPAL FINDINGS: Mice transgenic for mutant APPswe and mutant presenilin 1 (PS1dE9) were mated to mice with homozygous deletion of RAP. Unexpectedly, mice that were homozygous null for RAP and transgenic for APPswe/PS1dE9 showed high post-natal mortality, necessitating a shift in focus to examine the levels of amyloid deposition in APPswe/PS1dE9 that were hemizygous null for RAP. Immunoblot analysis confirmed 50% reductions in the levels of RAP with modest reductions in the levels of proteins dependent upon RAP for maturation [LRP trend towards a 20% reduction ; SorLA/LR11 statistically significant 15% reduction (p<0.05)]. Changes in the levels of these proteins in the brains of [APPswe/PS1dE9](+/-)/RAP(+/-) mice correlated with 30-40% increases in amyloid deposition by 9 months of age. CONCLUSIONS/SIGNIFICANCE: Partial reductions in the ER chaperone RAP enhance amyloid deposition in the APPswe/PS1dE9 model of Alzheimer amyloidosis. Partial reductions in RAP also affect the maturation of LRP and SorLA/LR11, which are each involved in several different aspects of APP processing and Abeta catabolism. Together, these findings suggest a central role for RAP in Alzheimer amyloidogenesis
    corecore